Kosona Chriv

Kosona Chriv

  • Adalidda

  • Cambodia, Phnom Penh, Phnom Penh
Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

Authors: Betty Mulianga, Agnès Bégué, Pascal Clouvel and Pierre Todoroff

Journal: Remote Sensing. This is an open access article distributed under the Creative Commons Attribution License.

Publisher: MDPI

Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014) to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI)) were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

Figure: The classified Landsat image of Kibos-Miwani showing six land cover classes: five classes of “Sugarcane” based on different stages (represented by #) of the crop, and one class of “Other” (Credits: Betty Mulianga, Agnès Bégué, Pascal Clouvel and Pierre Todoroff)

Post main image

Kosona Chriv
Kosona Chriv